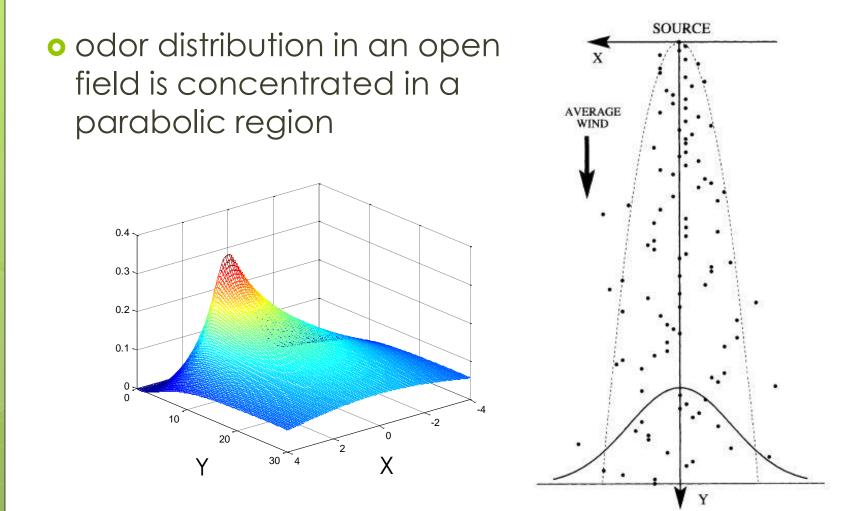
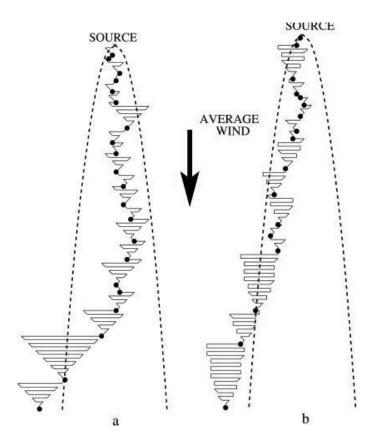
Search of Scent Source in Turbulent Flows


Cristina Retamoza Craig Thompson Laura Nakolan Noah Hammer Steven Smith

Difficulties with Turbulent Flows

- Turbulent flows consider variations at all scales
 - Large scale and small scale eddies mix
 - Diffusion
- Fluctuating structure of odor plume
 - Odor is not always present or does not point towards source
 - Concentration decreases as it moves away from the source and time between detecting odor increases.


What we Learned from the Paper

The paper...

- Examined three different strategies:
 - Passive Search
 - Active Conical Search
 - Active Parabolic Search

 Developed Probability Density Functions for each strategy

Probability Density Functions

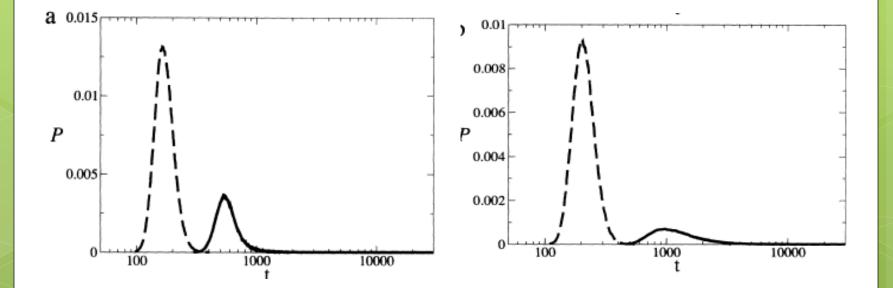
The Probability Distribution Function (PDF) of the "passive search" time is:

$$\rho(t) = \frac{1}{\sqrt{2\pi\Delta}} \exp\left\{-\frac{(t-t_s)^2}{2\Delta}\right\}$$

The Probability Distribution Function (PDF) of the "active search" time is:

$$o(t) = \frac{1}{4\sqrt{\pi bt}} \exp\left(-\frac{(t-t_s)^2}{2\Delta}\right) \left(1 + \frac{t_s}{t}\right)$$

Where

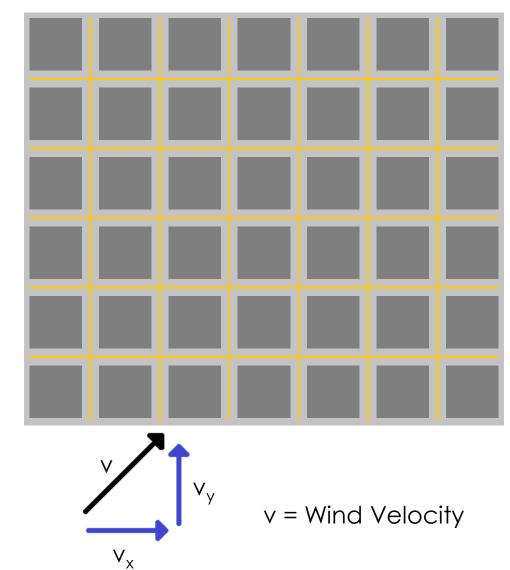

$$t_s \propto y_0^{\frac{3}{2}} \exp\left(\frac{x_0^2}{4Dy_0}\right)$$
, $\Delta \propto y_0^2 \exp\left(\frac{x_0^2}{2Dy_0}\right)$

Where $t_s \propto a y_0^{\frac{5}{4}}$ for the conical strategy $t_s \propto a_2 y_0^{\frac{7}{6}}$ for the parabolic search

 (x_{0}, y_{0}) is the initial position of the moth, t_{s} is the typical search time, Δ is the PDF variance

Results from the Paper

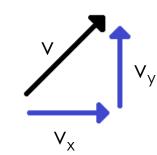
- Active search method significantly reduced typical search time
- Passive search was less effective when starting further from the center of the plume


Dotted line: active search, solid line: passive search

Our Project

• To develop an analytical model for odor dispersion in a turbulent urban setting, and determine the most efficient search algorithm to find the scent source

The Setup

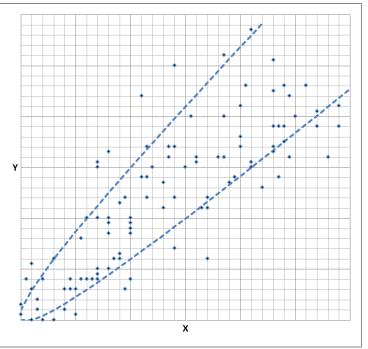

- The city is a perfect, square grid.
- Flux of wind into the city equals flux of wind out of the city.
- In the grid, the wind vector is uniform for all intersections.
- The velocity is split into different magnitude x and y components depending on the angle of the wind
- The buildings are very tall, and the wind flow at street level is not affected by the turbulent flow above the roof-tops in most cases.

The Setup

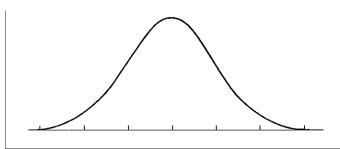
- The city is a perfect, square grid.
- Flux of wind into the city equals flux of wind out of the city.
- In the grid, the wind vector is uniform for all intersections.
- The velocity is split into different magnitude x and y components depending on the angle of the wind
- The buildings are very tall, and the wind flow at street level is not affected by the turbulent flow above the roof-tops in most cases.

- At every time interval, an odor patch is released by the scent source.
- The path of the odor patch at each intersection is determined by a weighted probability of the component wind vectors.
- The source and odor patches do not decay over time.

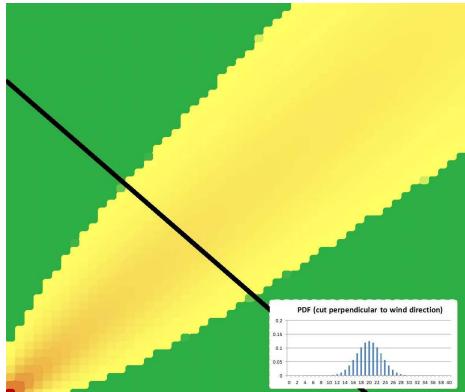
v = Wind Velocity


Challenges of Turbulent Wind in a City Grid

- In a city grid, buildings can affect the propagation of wind and therefore make detecting a scent source more difficult.
- The distribution of the odor patches is no longer Gaussian due to wind obstructions

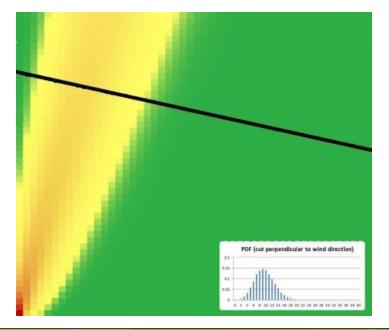


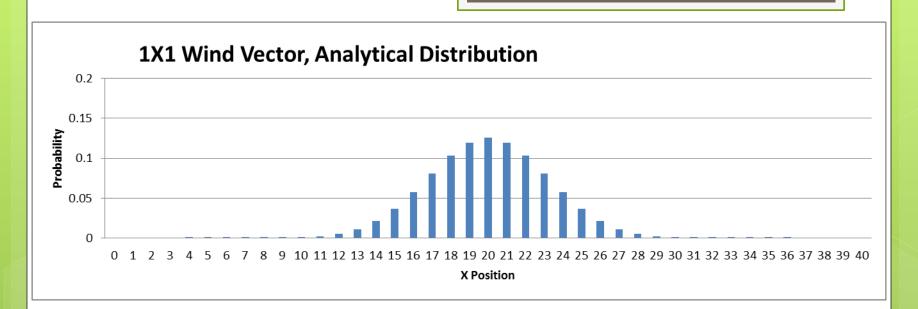
Methods


- Researched olfactory search in turbulent flow by reading journals
- Spoke to professors to analyze the behavior of the odor plume in a city grid
- Ran Monte Carlo simulations to create a distribution map
- Researched probability distribution types (Gaussian, Binomial, et cetera)
- Used Microsoft Excel to visualize the probability density and the cross section of the odor distribution
- Developed passive and active search algorithms in Python
- Analyzed most efficient search method based on typical search times

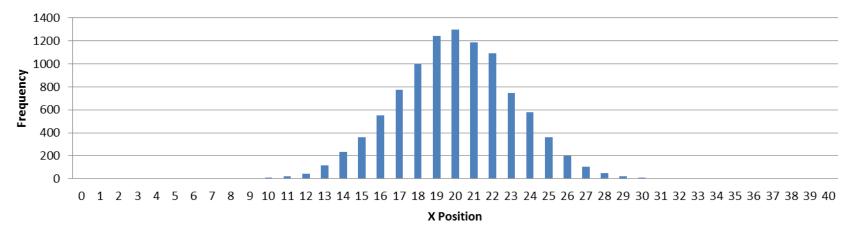
<u>Prediction:</u> A Parabolic distribution with bell-curve shaped cross sections.

<u>Result:</u> The analytical model developed supported the prediction, displaying a parabolic shape with the expected cross sections.

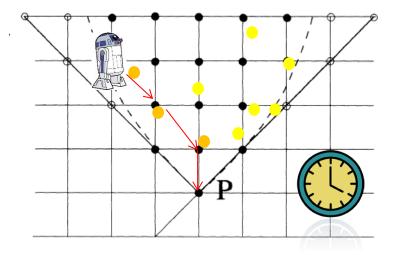



Probability Density Function

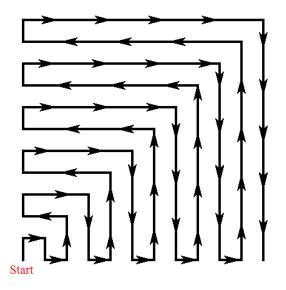
$$P_p(n|N) = \binom{N}{n} p^n q^{N-n} = \frac{N!}{n! (N-n)!} p^n (1-p)^{N-n}$$


$$f(x,y) = \binom{x+y}{x} p^{x} (1-p)^{y} = \frac{(x+y)!}{x! \, y!} p^{x} (1-p)^{y}$$

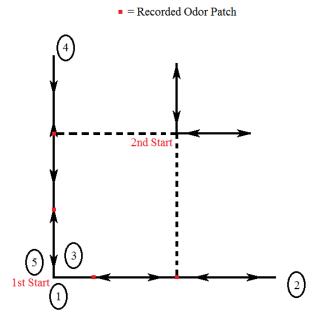
p = probability of moving to the rightq = 1-p = probability of moving upN = x+y= number of time steps



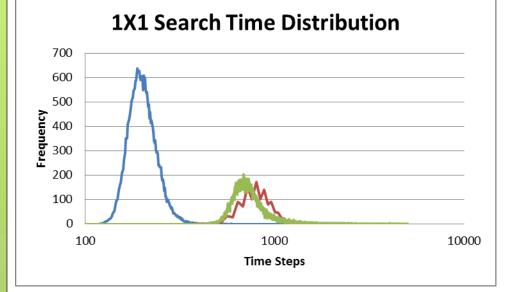
1X1 Wind Vector, Monte Carlo Simulation Results

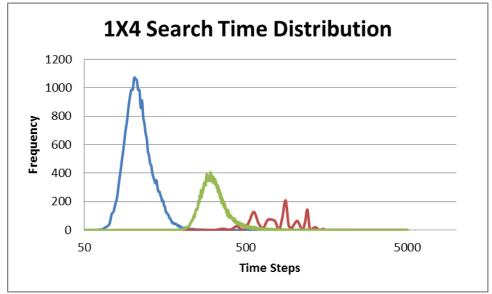

Passive Search Strategy

- Robot waits at a sight until it gets an odor patch
- Moves to the site from which the patch came


"Comb" Search Strategy

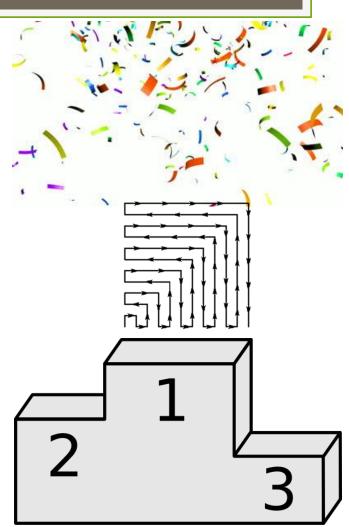
- Uses a zig-zag pattern to search for scent
- Centers its search on the wind gradient
- Widens search range after each zig-zag
- Resets after each odor patch


"Center" Search Strategy


- Casts constantly in the x and y directions
 - If it detects a scent patch it will move to that location
 - If it detects multiple scent patches, it chooses the farthest detected points to determine new starting position
 - Otherwise it will travel upwind by one x and y unit
- Casts the same length each time

Results and Conclusions

Search Type	Wind Vector	Average Search Time (50,000 Runs)	Failures (Out of 50,000)
Passive Search	45°	813.0 Time steps	116
	75°	353.6 Time steps	8
Active "Comb" Search	45°	208.2 Time steps	0
	75°	114.6 Time steps	0
Active "Center" Search	45°	822.3 Time steps	0
	75°	848.8 Time steps	55


Comb Method: Blue Center Method: Red Passive Method: Green

- The passive method consistently performed better than the center method for inside of plume searches.
- The center method has the advantage if the robot starts outside of the plume.
- Comb method performed best overall.

(Note: Search times should not be compared for different wind vectors.)

Conclusions

- The "Comb" search is the most efficient strategy
 - moves towards the source regardless of detection of odor patches
- The center method moves towards the source at a slow rate
 - is more likely to fail at near horizontal or vertical wind directions
- The passive method will eventually find the source
 - often takes an unreasonably large amount of time (especially when located outside of the wind plume)

Potential Applications

- Military applications involving the search for explosives
- Search for drugs or chemical leaks
- Better understanding of animal search patterns with obstacles

Future Research

Non-uniform City grid
Wind Changes
Multiple Scent Sources
Multiple Searching Robots

Acknowledgements

- Thank you to our mentor, Dr. Ildar Gabitov for all of his help and guidance!
- Special thank you to Misha Stepanov for his advisement on Binomial Distribution

References

Balkovsky, Eugene and Boris, I. Shraiman, Olfactory Search at High Reynold's Number, Proceedings of the National Academy of Science in the United States of America.**99.20**, 12589 – 12593 (2002).

Questions?